Solving Quadratic 3.12H and Other Equations

©2013 www.flickr.com/photos/astros

Ready, Set, Go!

Ready

Topic: Solving Systems of linear equations

Solve each system of equations using substitution.

1.

$$\begin{cases} y = 3x \\ y = -2x - 15 \end{cases}$$
2.
$$\begin{cases} 3x + y = 21 \\ y = -2x - 15 \end{cases}$$

$$\begin{cases} 3x + y = 21 \\ y = -2x - 15 \end{cases}$$

$$\begin{cases} 3x + 2y = 7 \\ x - 2y = -3 \end{cases}$$

Solve each system of equations using elimination.

5.
$$\begin{cases} 5x - y = 13 \\ -2x + y = -1 \end{cases}$$

$$\begin{cases} 3x + y = 21 \\ -3x + 5y = -3 \end{cases}$$

$$\begin{cases} 3x + 2y = 7 \\ x + y = 2 \end{cases}$$

$$\begin{cases} 3x + y = 21 \\ -3x + 5y = -3 \end{cases}$$

$$\begin{cases} 3x + 2y = 7 \\ x + y = 2 \end{cases}$$

Create an augmented matrix for each system of equations and then use row reductions to solve the system.

$$\begin{cases} 2x + y = 7 \\ -2x + y = -1 \end{cases}$$

$$\begin{cases} 2x + y = 7 \\ -2x + y = -1 \end{cases} \begin{cases} 3x - 4y = 11 \\ -3x + 5y = -3 \end{cases} \begin{cases} 5x - y = 13 \\ -2x + y = -1 \end{cases}$$

$$\begin{cases} 5x - y = 13 \\ -2x + y = -1 \end{cases}$$

Set

Topic: Operations with imaginary numbers

Perform the indicated operations on the complex numbers.

10.

$$(3+4i)+(2-5i)$$

11.

$$(6-4i)-(7+2i)$$

12.

$$3(5 + 2i)$$

13.

$$(9-2i)(1+3i)$$

14.
$$4(3-2i)-(5+3i)$$

15.

$$(2-5i)(2+5i)$$

Use the conjugate of each denominator to rationalize the denominators and write an equivalent fraction.

16.

$$\frac{3-5i}{2+5i}$$

3 - 5i

17.

$$\frac{6+7i}{4-3i}$$

18.

21.

$$\frac{2-3i}{1-6i}$$

Find the modulus for each complex number.

19.

$$-4 + 3i$$

22. If the graphical representation of the operations between two complex numbers results in a value along the y-axis or imaginary axis, what must be true about the two complex numbers?

4 - 3i

23. If the graphical representation of the operations between two complex numbers results in a value along the x-axis or real number axis, what must be true about the two complex numbers?

Go

Topic: Solving Quadratics

24. List the strategies that can be used to solve quadratic equations. Explain when each of the strategies would be most efficient. Give an example of a quadratic that would be most efficiently solved for each.

Solve the quadratics below using an appropriate method.

25.
$$x^2 + 9x + 18 = 0$$

$$x^2 - 2x - 3 = 0$$

$$2x^2 - 5x + 3 = 0$$

28.
$$(x-2)(x+3) = 0$$

$$29. 10x^2 - x + 9 = 0$$

30.
$$(x-2)^2 = 20$$