Date

1.1

READY

Topic: Recognizing Solutions to Equations

The solution to an equation is **the value of the variable** that makes the equation **true**. In the equation 9a + 17 = -21, "a" is the variable. When a = 2, $9a + 17 \neq -19$, because 9(2) + 17 = 35. Thus a = 2 is NOT a solution. However, when a = -4, the equation is true 9(-4) + 17 = -19. Therefore, a = -4 must be the solution.

Identify which of the 3 possible numbers is the solution to the equation.

1.
$$3x + 7 = 13$$
 ($x = -2$; $x = 2$; $x = 5$)
2. $8 - 2b = -2$ ($b = -3$; $b = 0$; $b = 5$)

3.
$$5 + 4g + 8 = 1$$
 ($g = -3$; $g = -1$; $g = 2$)
4. $6t - 5 + 5t = 105$ ($t = 4$; $t = 7$; $t = 10$)

Some equations have two variables. You may recall seeing an equation written like the following: y = 5x + 2. We can let *x* equal a number and then work the problem with this *x*- value to determine the associated y- value. A solution to the equation must include both the x- value and the y- value. Often the answer is written as an **ordered pair**. The *x*- value is always first. Example: (x, y). The order matters!

Determine the y-value of each ordered pair based on the given x- value.

`

5.
$$y = 6x - 15$$
; (8,), (-1,), (5,)
6. $y = -4x + 9$; (-5,), (2,), (4,)

4 m + 0, (E

7.
$$y = 2x - 1; (-4,), (0,), (7,)$$

8. $y = -x + 9; (-9,), (1,), (5,)$

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

) (2

) (4

SECONDARY MATH I // MODULE 1 SEQUENCES - 1.1

SET

Topic: Using a constant rate of change to complete a table of values

Fill in the table. Then write a sentence explaining how you figured out the values to put in each cell.

9. You run a business making birdhouses. You spend \$600 to start your business, and it costs you \$5.00 to make each birdhouse.

# of birdhouses	1	2	3	4	5	6	7
Total cost to build							

Explanation:

10. You make a \$15 payment on your loan of \$500 at the end of each month.

# of months	1	2	3	4	5	6	7
Amount of money owed							

Explanation:

11. You deposit \$10 in a savings account at the end of each week.

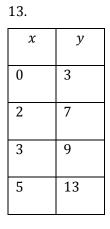
# of weeks	1	2	3	4	5	6	7
Amount of money saved							

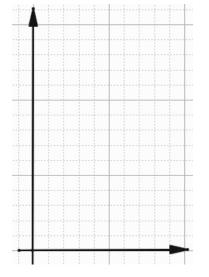
Explanation:

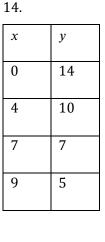
12. You are saving for a bike and can save \$10 per week. You have \$25 when you begin saving.

# of weeks	1	2	3	4	5	6	7
Amount of money saved							

Explanation:

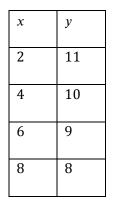

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

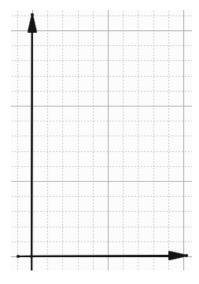



GO

Topic: Graph Linear Equations Given a Table of Values.

Graph the ordered pairs from the tables on the given graphs.





	1							1	
1111									
1.1									
1.0	Г —								
		 		· · · · i	}				
					}				
100									
		 			}				
								·	
		 	 		}	;			
		 			}				
-			 _		_		_		
							- 7		

15.

16.

						· · · • • · ·			
100	1	1	1	1	1	1	1	1	-
1									
									1
			_			-			-
1911									
	· · · · · ·								
1	1	1	1	1		1	-	1	-
1									
-	-	-		-		-	-	-	-

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 **mathematicsvision project.org**

