READY, SET, GO! Name Period Date

READY

Topic: Multiplying two binomials

In the previous RSG, you were asked to use the distributive property on two different terms in the same problem. Example: Multiply and simplify 3x(4x + 1) + 2(4x + 1).

You may have noticed that the binomial (4x + 1) occurred twice in the problem.

Here is a simpler way to write the same problem: (3x + 2)(4x + 1).

You will use the distributive property twice. First multiply 3x(4x + 1); then multiply +2(4x + 1). Add

the like terms. Write the x² term first, the x-term second, and the constant term last.

the like terms. Write the x term inclusion $3x(4x+1) + 2(4x+1) \rightarrow (12x^2 + 3x) + (8x+2) \rightarrow 12x^2 + [3x+8x] + 2 \rightarrow \underbrace{12x^2 + 11x + 2}_{\text{like terms}}$

Multiply the two binomials. (Your answer should have 3 terms and be in this form $ax^2 + bx + c$.)

1. $(x+5)(x-7)$	2. $(x+8)(x+3)$	3. $(x-9)(x-4)$
4. $(x+1)(x-4)$	5. $(3x - 5)(x - 1)$	6. $(5x - 7)(3x + 1)$
7. $(4x - 2)(8x + 10)$	8. $(x+6)(-2x+5)$	9. $(8x - 3)(2x - 1)$

11.

SET

Topic: Distinguishing between linear and quadratic patterns

Use first and second differences to identify the pattern in the tables as *linear, quadratic*, or *neither*. Write the recursive equation for the patterns that are linear or quadratic.

10.	x	у
	-3	-23
	-2	-17
	-1	-11
	0	-5
	1	1
	2	7
	3	13

a. Pattern:

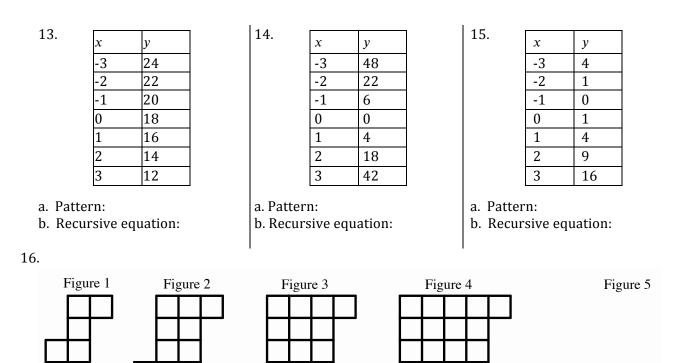
b. Recursive equation:

x	у	
-3 -2 -1	у 4	
-2	0	
	-2 -2	
0	-2	
1	0 4	
1 2 3	4	
3	10	

a.	Pattern:
b.	Recursive equation

x	у
-3	-15
-3 -2	-10 -5
-1	-5
0	0
1	0 5
1 2 3	10 15
3	15

a. Pattern:


12.

b. Recursive equation:

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

SECONDARY MATH II // MODULE 1 QUADRATIC FUNCTIONS - 1.3

a. Draw figure 5.

b. Predict the number of squares in figure 30. Show what you did to get your prediction.

GO

Topic: Interpreting recursive equations to write a sequence

Write the first five terms of the sequence.

17.
$$f(0) = -5; f(n) = f(n-1) + 8$$
 18. $f(0) = 24; f(n) = f(n-1) - 5$

19.
$$f(0) = 25; f(n) = 3f(n-1)$$

20.
$$f(0) = 6; f(n) = 2f(n-1)$$

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 *mathematicsvisionproject.org*

