
SECONDARY MATH II // MODULE 1 QUADRATIC FUNCTIONS - 1.6 **1.6** READY, SET, GO! Name Period Date

READY

Topic: Transforming lines

- 1. Graph the following linear equations on the grid. The equation y = x has been graphed for you. For each new equation explain what the number 3 does to the graph of y = x. Pay attention to the y-intercept, the x-intercept, and the slope. Identify what changes in the graph and what stays the same.
 - a. y = x + 3
 b. y = x 3
 - c. y = 3x

- 2. The graph of y = x is given. (*See figure 2.*) For each equation predict what you think the number -2 will do to the graph. Then graph the equation.
 - a. y = x + (-2) Prediction:
 - b. y = x (-2)Prediction:
 - c. y = -2x Prediction:

SECONDARY MATH II // MODULE 1 QUADRATIC FUNCTIONS - 1.6

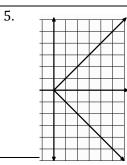
SET

Topic: Distinguish between linear, exponential and quadratic functions

For each relation given:

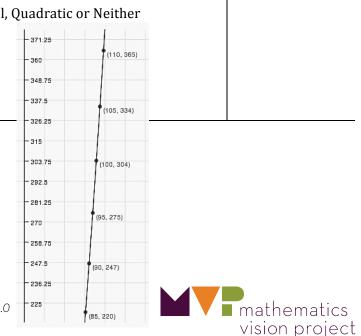
- a. Identify whether or not the relation is a function. (If it's not a function, skip b d.)
- b. Determine if the function is Linear, Exponential, Quadratic or Neither.
- c. Describe the type of growth.
- d. Express the relation in the indicated form.

3. I had 81 freckles on my nose before I began using vanishing cream. After the first week I had 27, the next week 9, then 3...


a. Function?

4.

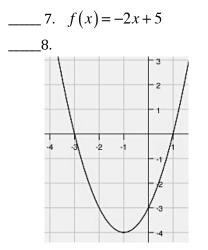
- b. Linear, Exponential, Quadratic or Neither
- c. How does it grow?
- d. Make a graph. Label your axes and the scale Show all 4 points.


х	V
0	81
1	$80\frac{2}{3}$
2	$80\frac{1}{3}$
3	80
4	$79\frac{2}{3}$

- a. Function?
- b. Linear, Exponential, Quadratic or Neither
- c. How does it grow?
- d. Write the explicit equation.

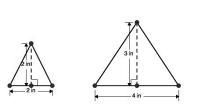
- a. Function? b. Linear, Exponential, Quadratic or Neither
- c. How does it grow?
- d. Create a table
- 6. Speed in mph of a baseball vs. distance in ft.
- a. Function?
- b. Linear, Exponential, Quadratic or Neither
- c. How does it grow?
- d. Predict the distance the baseball flies, if it leaves the bat at a speed of 115 mph.

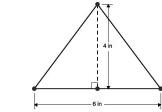
Licensed under the Creative Commons Attribution CC BY 4.0 *mathematicsvisionproject.org*



Mathematics Vision Project

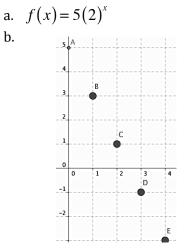
GO


Topic: Matching function representations


Match the function on the left with the equivalent function on the right.

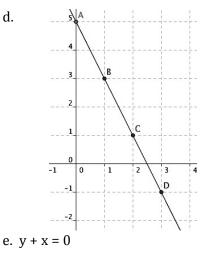
9. I put \$7000 in a savings account that pays 3% interest compounded annually. I plan to leave it in the bank for 20 years. The amount I will have then.

____10. The area of the triangles below.



____11. f(0) = 5; f(n) = 2 * f(n-1)

____12.
$$f(0) = 5; f(n) = f(n-1) - 2$$


13.				
Х	-7.75	-1⁄4	1/2	11.6
f(x)	7.75	1⁄4	-1/2	-11.6

Mathematics Vision Project Licensed under the Creative Commons Attribution CC BY 4.0 mathematicsvisionproject.org

b.

c.
$$f(1) = 2$$
; $f(n+1) = f(n) + 2n + 2$

f.
$$y = (x - 1)(x + 3)$$

g. A = $7000(1.03)^{20}$

