READY, SET, GO!

Name

Period

Date

READY

A golf-pro practices his swing by driving golf balls off the edge of a cliff into a lake. The height of the ball above the lake (measured in meters) as a function of time (measured in seconds and represented by the variable t) from the instant of impact with the golf club is

$$58.8 + 19.6t - 4.9t^2$$

The expressions below are equivalent:

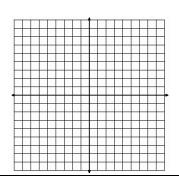
$$-4.9t^{2} + 19.6t + 58.8$$
 standard form
 $-4.9(t - 6)(t + 2)$ factored form
 $-4.9(t - 2)^{2} + 78.4$ vertex form

- 1. Which expression is the most useful for finding how many seconds it takes for the ball to hit the water? Why?
- 2. Which expression is the most useful for finding the maximum height of the ball? Justify your answer.
- 3. If you wanted to know the height of the ball at exactly 3.5 seconds, which expression would help the most to find the answer? Why?
- 4. If you wanted to know the height of the cliff above the lake, which expression would you use? Why?

SET

Topic: Finding multiple representations of a quadratic

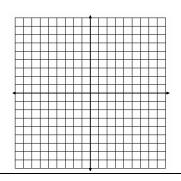
One form of a quadratic function is given. Fill-in the missing forms.


5 a. Standard Form	b. Vertex Form		c. Factored Form
			y = (x+5)(x-3)
d. <i>Table</i> (Include the vertex and at least 2 points on each side of the vertex.)		e. Graph	
		-	
Show the first differences and the second differences.			

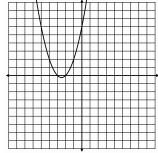
Need help? Visit www.rsgsupport.org

- 6 a. Standard Form b. Vertex Form c. Factored Form $y = -3(x-1)^2 + 3$
- d. *Table* (Include the vertex and at least 2 points on each side of the vertex.)

Show the first differences and the second differences.


e. Graph

- 7 a. Standard Form b. Vertex Form c. Factored Form $y = -x^2 + 10x - 25$
- d. Table (Include the vertex and at least 2 points on each side of the vertex.)


Show the first differences and the second differences.

e. Graph

- 8 a. Standard Form b. Vertex Form c. Factored Form d. Table (Include the vertex and at least 2 e. Graph
- points on each side of the vertex.)

Show the first differences and the second differences.

9 a. Standard Form	b. Vertex Form		c. Factored Form Skip this for now
d. Table		e. <i>Graph</i>	
X	У		
0 1 2 3 4 5 6	12 2 -4 -6 -4 2 12		
Show the first difference differences.	s and the second		

GO

Topic: Factoring Quadratics

Verify each factorization by multiplying.

10.
$$x^2 + 12x - 64 = (x + 16)(x - 4)$$
 11. $x^2 - 64 = (x + 8)(x - 8)$

11.
$$x^2 - 64 = (x + 8)(x - 8)$$

12.
$$x^2 + 20x + 64 = (x + 16)(x + 4)$$
 13. $x^2 - 16x + 64 = (x - 8)(x - 8)$

13.
$$x^2 - 16x + 64 = (x - 8)(x - 8)$$

Factor the following quadratic expressions, if possible. (Some will not factor.)

14.
$$x^2 - 5x + 6$$
 15. $x^2 - 7x + 6$ 16. $x^2 - 5x - 36$

15.
$$x^2 - 7x + 6$$

16.
$$x^2 - 5x - 36$$

17.
$$m^2 + 16m + 63$$
 18. $s^2 - 3s - 1$ 19. $x^2 + 7x + 2$

18.
$$s^2 - 3s - 1$$

19.
$$x^2 + 7x + 2$$

20.
$$x^2 + 14x + 49$$
 21. $x^2 - 9$

21.
$$x^2 - 9$$

22.
$$c^2 + 11c + 3$$

- 23. Which quadratic expression above could represent the area of a square? Explain.
- 24. Would any of the expressions above NOT be the side-lengths for a rectangle? Explain.