For each of the quadratic expressions below fill in the blank to make a perfect square trinomial expression.

1.
$$x^2 + 6x +$$

2.
$$x^2 - 10x +$$

1.
$$x^2 + 6x +$$
 2. $x^2 - 10x +$ 3. $x^2 + 18x +$

$$4. x^2 + \underline{} x + 49$$

5.
$$x^2 - x + 64$$

$$4. x^2 + \underline{\hspace{1cm}} x + 49$$
 $5. x^2 - \underline{\hspace{1cm}} x + 64$ $6. x^2 + \underline{\hspace{1cm}} x + 100$

For each of the quadratic functions below write the given form of the quadratic in either the standard form $ax^2 + bx + c$ or in the vertex form $a(x - h)^2 + k$ which ever is missing in the table.

Vertex Form	Standard Form
$2(x-3)^2+1$	
	$x^2 + 6x + 7$
$(x-5)^2+6$	
	$x^2 - 10x + 4$

	Warm Up 2.4
Name	Period

For each of the quadratic expressions below fill in the blank to make a perfect square trinomial expression.

$$1. x^2 + 6x +$$

1.
$$x^2 + 6x +$$
 2. $x^2 - 10x +$ 3. $x^2 + 18x +$

3.
$$x^2 + 18x +$$

$$4. x^2 + \underline{} x + 49$$

5.
$$x^2 - \underline{} x + 64$$

$$4. x^2 + \underline{\hspace{1cm}} x + 49$$
 $5. x^2 - \underline{\hspace{1cm}} x + 64$ $6. x^2 + \underline{\hspace{1cm}} x + 100$

For each of the quadratic functions below write the given form of the quadratic in either the standard form $ax^2 + bx + c$ or in the vertex form $a(x - h)^2 + k$ which ever is missing in the table.

Vertex Form	Standard Form
$2(x-3)^2+1$	
	$x^2 + 6x + 7$
$(x-5)^2+6$	
	$x^2 - 10x + 4$