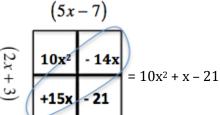
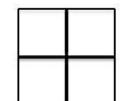
© 2013 www.flickr.com/photos/sandyleee

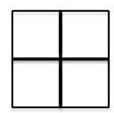
Ready, Set, Go!

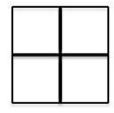
Ready

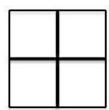

Topic: Multiplying binomials using a two-way table.

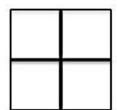

Multiply the following binomials using the given two-way table to assist you.

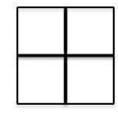
Example:

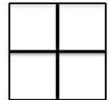

Multiply (2x + 3)(5x - 7)

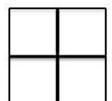

1.
$$(3x-4)(7x-5)$$

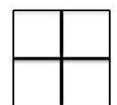

2.
$$(9x + 2)(x + 6)$$


3.
$$(4x-3)(3x+11)$$


4.
$$(7x + 3)(7x - 3)$$


5.
$$(3x - 10)(3x + 10)$$


6.
$$(11x + 5)(11x - 5)$$


7.
$$(4x + 5)^2$$

8.
$$(x+9)^2$$

9.
$$(10x - 7)^2$$

10. What do you notice in the "like-term" boxes in #'s 7, 8, and 9 that is different from the other problems?

Set Topic: Factored form of a quadratic function

Given the **factored form** of a quadratic function, identify the vertex, intercepts, and vertical stretch of the parabola.

V:_____

11.
$$y = 4(x-2)(x+6)$$
 12. $y = -3(x+2)(x-6)$

V:_____

13. y = (x + 5)(x + 7)

x-inter(s) _____

x-inter(s) _____

x-inter(s) _____

y-inter _____

y-inter _____

y-inter _____

stretch _____

stretch _____

stretch _____

14. $y = \frac{1}{2}(x-7)(x-7)$ 15. $y = -\frac{1}{2}(x-8)(x+4)$

16. $y = \frac{3}{5}(x - 25)(x - 9)$

x-inter(s) _____

x-inter(s) _____

x-inter(s) _____

y-inter _____

y-inter _____

y-inter _____

stretch _____

stretch _____

stretch _____

17. $y = \frac{3}{4}(x-3)(x+3)$ 18. y = -(x-5)(x+5)

19. $y = \frac{2}{3}(x+10)(x+10)$

x-inter(s) _____ *y*-inter _____

x-inter(s) _____ *y*-inter _____

x-inter(s) _____ *y*-inter _____

stretch _____

stretch _____

stretch _____

Go

Topic: Vertex form of a quadratic function

Given the **vertex form** of a quadratic function, identify the vertex, intercepts, and vertical stretch of the parabola.

20.
$$y = (x + 2)^2 - 4$$

21.
$$y = -3(x+6)^2 + 3$$

22.
$$y = 2(x-1)^2 - 8$$

V:____

V:____

V:_____

x-inter(s) _____

x-inter(s) _____

x-inter(s) _____

y-inter _____

y-inter _____

y-inter _____

stretch _____

stretch _____

stretch _____

23.
$$y = 4(x+2)^2 - 64$$

24.
$$y = -3(x-2)^2 + 48$$

25.
$$y = (x+6)^2 - 1$$

V:____

V:

V:_____

x-inter(s) _____

x-inter(s) ______

x-inter(s) _____

y-inter _____

y-inter _____

problems 23, 24, & 25 respectively? If you didn't, go back and compare the answers in problems

y-inter _____stretch _____

stretch _____ stretch ____

26. Did you notice that the parabolas in problems 11, 12, & 13 are the same as the ones in

11, 12, & 13 and problems 23, 24, & 25.

a.

Prove that

$$4(x-2)(x+6) = 4(x+2)^2 - 64$$

b.
$$-3(x+2)(x-6) = -3(x-2)^2 + 48$$

c.
$$(x+5)(x+7) = (x+6)^2 - 1$$