Ready, Set, Go!

© 2012 www.flickr.com/photos/fdecomite

Ready

Topic: Finding recursive and explicit rules for tables.

For each table create both a recursive and an explicit function rule.

1.	
X	f(x)
0	7
1	10
2	13
3	16

2.	
X	f(x)
0	7
1	14
2	28
3	56
D ' D 1	

3.	
t	f(t)
0	1
1	10
2	100
3	1000
n · n ·	

Recursive Rule:

Recursive Rule:

Recursive Rule:

Explicit Function:

Explicit Function:

Explicit Function:

4.	
X	g(x)
0	12
1	8
2	4
3	0

5.	
t	h(t)
0	5
1	10
2	20
3	40
	•

6.	
t	h(t)
0	5
1	10
2	15
3	20

Recursive Rule:

Recursive Rule:

Recursive Rule:

Explicit Function:

Explicit Function:

Explicit Function:

7.	
n	f(n)
0	4
1	9
2	13
3	18

8.	
n	f(n)
0	4
1	12
2	36
3	108

9.	
X	f(x)
0	6
1	12
2	24
3	48

Recursive Rule:

Recursive Rule:

Recursive Rule:

Explicit Function:

Explicit Function:

Explicit Function:

Set

Topic: Evaluate the following equations when $x = \{1, 2, 3, 4, 5\}$. Organize your inputs and outputs into a table of values for each equation. Let x be the input and y be the output.

10.
$$f(x) = 4^x$$

11.
$$g(x) = (-3)^x$$
 12. $h(x) = -3^x$

12.
$$h(x) = -3^x$$

13.
$$r(x) = 10 - 3x$$

Go

Topic: Solve equations and justify

Solve each equation, justifying each step you use. (Addition property of equality, etc. Distributive Property, Combining like terms)

14.

15.

$$3(x+2) = 15$$
 Justification

x - 10 = 2	Justification

16.

17.

$$2(x+3) = x+11$$
 Justification

6x - 5 = 11 + 2x	Justification