Name \qquad Period \qquad
Find the roots of the quadratics.

1. $2 x^{2}-7 x+6=0$
2. $2 x^{2}+7 x+7=0$
3. $2 x^{2}+7 x-6=0$
4. Do all quadratics have x-intercepts? Why or Why not?
5. If they don't have x-intercepts, what happens when you do the quadratic formula?
6. Factored Form: $(x+3)(x-7)$ Find the standard form and vertex forms.
7. Factored Form: $(x+2-i)(x+2+i)$ Find the standard and vertex forms.
8. Simplify each of the following. Use imaginary numbers as needed.
a. $\sqrt{-2} \cdot \sqrt{-8}$
b. $\sqrt{-36}$
c. $(2 i)^{4}$
d. $\sqrt{-4} \cdot \sqrt{-4}$
e. $(\sqrt{-100})$
f. i^{5}
9. What is the discriminant? What does the value of the discriminant help you to know about the quadratic and its roots?

The quadratic formula is usually written in the form $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. An equivalent form is $\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}$. If a, b and c are rational coefficients, then $\frac{-b}{2 a}$ is a rational term, and $\frac{\sqrt{b^{2}-4 a c}}{2 a}$ may be a rational term, an irrational term or an imaginary term, depending on the value of the expression under the square root sign.
10. Examine the roots of the quadratic $y=x^{2}-6 x+7$ shown in the graph at the right. How do the terms $\frac{-b}{2 a}$ and $\frac{\sqrt{b^{2}-4 a c}}{2 a}$ show up in this graph?

A polynomial function is a function of the form:

$$
y=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots a_{n-3} x^{3}+a_{n-2} x^{2}+a_{n-1} x+a_{n}
$$

where all of the exponents are positive integers and all of the coefficients $a_{0} \ldots a_{\mathrm{n}}$ are constants.
As the theory of finding roots of polynomial functions evolved, a $17^{\text {th }}$ century mathematician, Girard (1595-1632) made the following claim which has come to be known as the Fundamental Theorem of Algebra: An $n^{\text {th }}$ degree polynomial function has n roots.
11. Based on you work in this task, do you believe this theorem holds for quadratic functions? That is, do all functions of the form $y=a x^{2}+b x+c$ always have two roots?

