More	Complex	Number	Computation
111010	compion	1 vannoer	compatition

Name	Period	
Simplify each expression. 1) <i>i</i> + 6 <i>i</i>	Rationalize the expressions, make all demoninators real numbers. 2) $\frac{3}{5i}$	
3) 3 <i>i</i> + <i>i</i>	4) $\frac{-1}{-9i}$	
5) $-1 - 8i - 4 - i$	$6) \ \frac{6+8i}{9i}$	
7) $-3 + 6i - (-5 - 3i) - 8i$		
9) $4i(-2-8i)$	8) $\frac{-3+10i}{-6i}$	
11) $5i \cdot i \cdot -2i$	10) $\frac{10-10i}{-5i}$	
	12) $\frac{8i}{-1+3i}$	

Rationalize each of the denominators for the expressions below. Use the conjugate of the denominator in your work.

13)
$$\frac{1}{-8-5i}$$
 14) $\frac{i}{-2-8i}$

15)
$$\frac{4}{-3-6i}$$
 16) $\frac{-10-5i}{-6+6i}$

17)
$$\frac{-5-9i}{9+8i}$$
 18) $\frac{-4+10i}{3+4i}$

19)
$$\frac{-5-3i}{7-10i}$$
 20) $\frac{-3-7i}{7+10i}$

21. If you graph a complex number and its conjugate on the complex plane what happens?

22. If you add a complex number and its conjugate what happens? How does this show up on the complex plane?

23. If you multiply a complex number and its conjugate what happens? How does this show up on the complex plane?

PART 2

Find the Modulus for each complex number.

- 1) |7-i| 2) |-5-5i|
- 3) |-2+4i| 4) |3-6i|
- 5) |10-2i| 6) |-4-8i|
- 7) |-4-3i| 8) |8-3i|
- 9) |1-8i| 10) |-4+10i|

Draw a vector to represent each of the complex numbers

11) -3 + 4i

13) -1 - 4i

Part 3

Find the distance between the complex numbers.

15.
$$16.$$
 $17.$ $9+8i \ and \ 7+4i$ $-3+4i \ and \ 5+6i$ $6+10i \ and \ -2+8i$

Find the midpoint between the complex numbers.

18.
$$19.$$
 20. $-3 + 4i$ and $5 + 6i$ $6 + 10i$ and $-2 + 8i$