Name \qquad Period \qquad

Simplify each expression. 1) $i+6 i$	Rationalize the expressions, make all demoninators real numbers. 2) $\frac{3}{5 i}$
3) $3 i+i$	4) $\frac{-1}{-9 i}$
5) $-1-8 i-4-i$	6) $\frac{6+8 i}{9 i}$
7) $-3+6 i-(-5-3 i)-8 i$ 9) $4 i(-2-8 i)$	8) $\frac{-3+10 i}{-6 i}$
11) $5 i \cdot i \cdot-2 i$	10) $\frac{10-10 i}{-5 i}$
	12) $\frac{8 i}{-1+3 i}$

Rationalize each of the denominators for the expressions below. Use the conjugate of the denominator in your work.
13) $\frac{1}{-8-5 i}$
14) $\frac{i}{-2-8 i}$
15) $\frac{4}{-3-6 i}$
16) $\frac{-10-5 i}{-6+6 i}$
17) $\frac{-5-9 i}{9+8 i}$
18) $\frac{-4+10 i}{3+4 i}$
19) $\frac{-5-3 i}{7-10 i}$
20) $\frac{-3-7 i}{7+10 i}$
21. If you graph a complex number and its conjugate on the complex plane what happens?
22. If you add a complex number and its conjugate what happens? How does this show up on the complex plane?
23. If you multiply a complex number and its conjugate what happens? How does this show up on the complex plane?

PART 2

Find the Modulus for each complex number.

1) $|7-i|$
2) $|-5-5 i|$
3) $|-2+4 i|$
4) $|3-6 i|$
5) $|10-2 i|$
6) $|-4-8 i|$
7) $|-4-3 i|$
8) $|8-3 i|$
9) $|1-8 i|$
10) $|-4+10 i|$

Draw a vector to represent each of the complex numbers
11) $-3+4 i$
12) $-1+5 i$

13) $-1-4 i$

14) $4+4 i$

Part 3
Find the distance between the complex numbers.
15.
16.

$$
9+8 i \text { and } 7+4 i
$$

$$
-3+4 i \text { and } 5+6 i
$$

17.

$6+10 i$ and $-2+8 i$

Find the midpoint between the complex numbers.
18.

$$
9+8 i \text { and } 7+4 i
$$

19.

$-3+4 i$ and $5+6 i$
20.
$6+10 i$ and $-2+8 i$

