READY, SET, GO!

Name

Period

Date

READY

Topic: Meaning of Exponents

In the table below there is a column for the exponential form, the meaning of that form, which is a list of factors and the standard form of the number. Fill in the form that is missing.

Exponential form		List of factors Standard Form	
	5 ³	5 · 5 · 5	125
1a.		7 · 7 · 7 · 7 · 7 · 7	b.
2.	2 ¹⁰	a.	b.
3a.		b.	81
4.	11 ⁵	a.	b.
5a.		3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3	b.
6a.		b.	625

Provide at least three other equivalent forms of the exponential expression. Use rules of exponents such as $3^5 \cdot 3^6 = 3^{11}$ and $(5^2)^3 = 5^6$ as well as division properties and others.

	1 st Equivalent Form	Equivalent Form	Equivalent Form
7. 2 ¹⁰ =			
8. 3 ⁷ =			
9. 13 ⁻⁸ =			
10. $7^{\frac{1}{3}} =$			
11. 5 ¹ =			

SET

Topic: Finding equivalent expressions and functions

Determine whether all three expressions in each problem below are equivalent. Justify why or why they are not equivalent.

12.
$$5(3^{x-1})$$

$$15(3^{x-2})$$

$$\frac{5}{3}(3^{x})$$

13.
$$64(2^{-x})$$

$$\frac{64}{2^x}$$

$$64\left(\frac{1}{2}\right)^x$$

$$3(x-2) + 7$$

15.
$$50(2^{x+2})$$

$$25(2^{2x+1})$$

$$50(4^{x})$$

16.
$$30(1.05^x)$$

$$30(1.05^{\frac{1}{7}})^{7x}$$

$$30\left(1.05^{\frac{x}{2}}\right)^2$$

17.
$$20(1.1^x)$$

$$20 (1.1^{-1})^{-1x}$$

$$20\left(1.1^{\frac{1}{5}}\right)^{5x}$$

GO

Topic: Using rules of exponents

Simplify each expression. Your answer should still be in exponential form.

18.
$$7^3 \cdot 7^5 \cdot 7^2$$

19.
$$(3^4)^5$$

20.
$$(5^3)^4 \cdot 5^7$$

21.
$$x^3 \cdot x^5$$

22.
$$x^{-b}$$

23.
$$x^a \cdot x^b$$

24.
$$(x^a)^b$$

25.
$$\frac{y^a}{y^b}$$

$$26. \quad \frac{(y^a)^c}{v^b}$$

27.
$$\frac{(3^4)^6}{37}$$

28.
$$\frac{r^5s^3}{rs^2}$$

29.
$$\frac{x^5y^{12}z^0}{x^8v^9}$$