Solving Quadratic 3.3 and Other Equations

Ready, Set, Go! Ready

Topic: Meaning of Exponents

1.

In the table below there is a column for the exponential form, the meaning of that form, which is a list of factors and the standard form of the number. Fill in the form that is missing.

©2013 www.flickr.com/photos/zooboing

Exponential form Standard Form List of factors 5^3 $5 \cdot 5 \cdot 5$ 125 7 - 7 - 7 - 7 - 7 - 7 210 81 11^{5} 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 · 3 625

Provide at least three other equivalent forms of the exponential expression. Use rules of exponents such as $3^5 \cdot 3^6 = 3^{11}$ and $(5^2)^3 = 5^6$ as well as division properties and others.

		1 st Equivalent Form	2 nd Equivalent Form	3 rd Equivalent Form
	2 ¹⁰ =			
3.	3 ⁷ =			
4.	13 ⁻⁸ =			
5.	$7^{\frac{1}{3}}$			
6.	5 ¹			

Set

Topic: Finding equivalent expressions and functions.

Determine whether the expressions or functions in each problem below are equivalent. Justify why or why they are not equivalent.

7.
$$5(3^{x-1})$$

$$15(3^{x-2})$$

$$\frac{3}{5}(3^{x})$$

8.
$$64(2^{-x})$$

$$\frac{64}{2^x}$$

$$64\left(\frac{1}{2}\right)^x$$

9.
$$3(x-1)+4$$

$$3x - 1$$

$$3(x-2) + 7$$

10.
$$50(2^{x+2})$$

$$25(2^{2x+1})$$

$$50(4^{x})$$

11.
$$30(1.05^x)$$

$$30\left(1.05^{\frac{1}{7}}\right)^{7x}$$

$$30\left(1.05^{\frac{x}{2}}\right)^2$$

12.
$$20(1.1^x)$$

$$20 (1.1^{-1})^{-1x}$$

$$20\left(1.1^{\frac{1}{5}}\right)^{5x}$$

Go

Topic: Using rules of exponents

Simplify each expression.

13.

$$7^3 \cdot 7^5 \cdot 7^2$$

14.

$$(3^4)^5$$

15.

$$(5^3)^4 \cdot 5^7$$

16.

$$x^3 \cdot x^5$$

17.

$$x^{-b}$$

18.

$$x^a \cdot x^b$$

19.

$$(x^a)^b$$

20.

$$\frac{y^a}{y^b}$$

21.

$$\frac{(y^a)^c}{v^b}$$

22.

$$\frac{\left(3^4\right)^6}{3^7} =$$

23.

$$\frac{r^5s^3}{rs^2} =$$

24.

$$\frac{x^5y^{12}z^0}{x^8y^9} =$$