SECONDARY MATH II // MODULE 3

SOLVING QUADRATICS & OTHER EQUATIONS - 3.4

READY

Topic: Standard form or Quadratic form

In each of the quadratic equations, $ax^2 + bx + c = 0$ identify the values of a, b and c.

1. $x^2 + 3x + 2 = 0$	2. $2x^2 + 3x + 1 = 0$	3. $x^2 - 4x - 12 = 0$
a =	a =	a =
b =	b =	b =
c =	c =	c =

Write each of the quadratic expressions in factored form.

4.	x ² + 3x +2	5.	$2x^2 + 3x + 1$	6.	x ² - 4x - 12
7.	x ² - 3x +2	8.	$x^2 - 5x - 6$	9.	$x^2 - 4x + 4$
10.	x ² + 8x - 20	11.	x ² + x - 12	12.	x ² - 7x + 12

Need help? Visit www.rsgsupport.org

SET

Topic: Radical notation and radical exponents

Each of the expressions below can be written using either radical notation, $\sqrt[n]{a^m}$ or rational

exponents $a^{\frac{m}{n}}$. Rewrite each of the given expressions in the form that is missing. Express in most simplified form.

	Radical Form	Exponential Form
13.	$\sqrt[3]{5^2}$	
14.		$16^{\frac{3}{4}}$
15.	$\sqrt[3]{5^7 \cdot 3^5}$	
16.		$9\frac{2}{3} \cdot 9\frac{4}{3}$
17.	$\sqrt[5]{x^{13}y^{21}}$	
18.	$\sqrt[3]{27a^5b^2}$	
19.	$\sqrt[5]{\frac{32x^{13}}{243y^{15}}}$	
20.		$9\frac{3}{2}s\frac{6}{3}t\frac{1}{2}$

Solve the equations below, use radicals or rational exponents as needed.

21. $(x+5)^4 = 81$ 22. $2(x-7)^5 + 3 = 67$

Need help? Visit www.rsgsupport.org

GO

Topic: x-intercepts and y-intercepts for linear, exponential and quadratic functions

Given the function, find the x-intercept (s) and y-intercept if they exist and then use them to graph a sketch of the function.

Need help? Visit www.rsgsupport.org

