Name $\qquad$ Period $\qquad$
Find three different values for $\boldsymbol{c}$ that allow the quadratic expression to factor into two binomials.

1. $x^{2}-3 x+c$
2. $x^{2}+2 x-c$
3. $x^{2}+4 x+c$

Solve each of the quadratic equations below. Be sure that you find all solutions.
4. $4=(x+3)^{2}-5$
5. $0=x^{2}-18 x+81$
6. $0=(x-8)^{2}-15$
7. Given the vertex form of a quadratic below with an $\boldsymbol{a}$ value of 1 solve it for $\boldsymbol{x}$.

$$
0=(x-h)^{2}+k
$$

Are there any values $\boldsymbol{h}$ or $\boldsymbol{k}$ for which the solution would not make sense? Why?

## Warm Up 3.5.1

Name $\qquad$ Period $\qquad$
Find three different values for $\boldsymbol{c}$ that allow the quadratic expression to factor into two binomials.

1. $x^{2}-3 x+c$
2. $x^{2}+2 x-c$
3. $x^{2}+4 x+c$

Solve each of the quadratic equations below. Be sure that you find all solutions.
4. $4=(x+3)^{2}-5$
5. $0=x^{2}-18 x+81$
6. $0=(x-8)^{2}-15$
7. Given the vertex form of a quadratic below with an $\boldsymbol{a}$ value of 1 solve it for $\boldsymbol{x}$.

$$
0=(x-h)^{2}+k
$$

Are there any values $\boldsymbol{h}$ or $\boldsymbol{k}$ for which the solution would not make sense? Why?

