Solving Quadratic 3.8 and Other Equations

©2013 www.flickr.com/photos/danielpfleming

Ready, Set, Go!

Ready

Topic: Simplifying radicals

Simplify each of the radicals below.

1.

 $\sqrt{8}$

2.

3.

 $\sqrt{32}$

4.

 $\sqrt{20}$

5.

 $\sqrt{45}$

 $\sqrt{18}$

6.

 $\sqrt{80}$

7. What is the connection between the radicals above? Explain.

Set

Topic: Determine the nature of the x-intercepts for each quadratic below.

Given the quadratic function, its graph or other information below determine the nature of the x-intercepts. Explain or show how you know.

(Whole numbers "W", Integers " \mathbb{Z} ", Rational " \mathbb{Q} ", Irrational " $\mathbb{\overline{Q}}$ ", not Real)

Solving Quadratic 3.8 and Other Equations

10. Determine the nature of the x-intercepts.

$$f(x) = 2x^2 + 3x - 5$$

11. Determine the nature of the x-intercepts.

12. Determine the nature of the x-intercepts. 13. Determine the nature of the x-intercepts.

$$g(x) = (2x - 1)(5x + 2)$$

 $h(x) = 3x^2 - 5x + 9$

 $r(t) = t^2 - 8t + 16$

Determine the number of roots that each polynomial will have.

$$x^5 + 7x^3 - x^2 + 4x - 21$$

$$4x^3 + 2x^2 - 3x - 9$$

$$2x^7 + 4x^3 - 5x^2 + 16x + 3$$

Go

Topic: Finding x-intercepts for quadratics using factoring and quadratic formula.

If the given quadratic function can be factored then factor and provide the x-intercepts. If you cannot factor the function then use the quadratic formula to find the x-intercepts.

16.

$$A(x) = x^2 + 4x - 21$$

17.

$$B(x) = 5x^2 + 16x + 3$$

18.

$$C(x) = x^2 - 4x + 1$$

19.

$$D(x) = x^2 - 16x + 4$$

20.

$$E(x) = x^2 + 3x - 40$$

21.

$$F(x) = 2x^2 - 3x - 9$$

22.

$$G(x) = x^2 - 3x$$

23.

$$H(x) = x^2 + 6x + 8$$

24.

$$K(x) = 3x^2 - 11$$

Need Assistance? Check out these additional resources:

https://www.khanacademy.org/math/algebra/quadratics/quadratic_formula/v/quadratic -formula-1