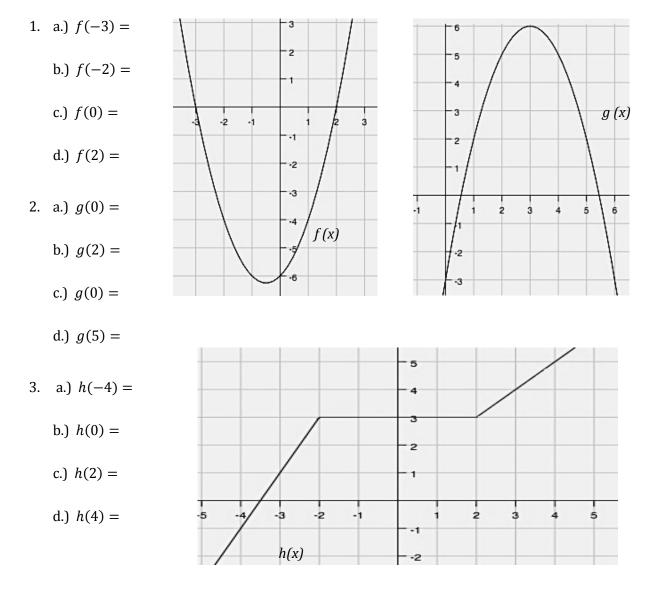
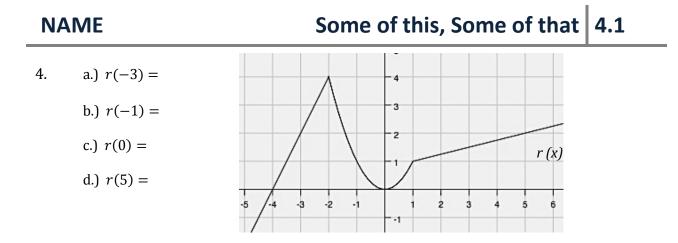
Ready, Set, Go!


#### Ready

Topic: Reading function values in a piece-wise defined graph.




Use the graph to find the indicated function value.

©2013http://flic.kr/p/555YXq



### © 2013 MATHEMATICS VISION PROJECT | Mold VP



5. Isaac lives 3 miles away from his school. School ended at 3 pm and Isaac began his walk home with his friend Tate who lives 1 mile away from the school, in the direction of Isaac's house. Isaac stayed at Tate's house for a while and then started home. On the way he stopped at the library. Then he hurried home. The graph at the right is a **piece-wise defined function** that shows Isaac's distance from home during the time it took him to arrive home.

a.) How much time passed between school ending and Isaac's arrival home?

- b.) How long did Isaac stay at Tate's house?
- c.) How far is the library from Isaac's house?



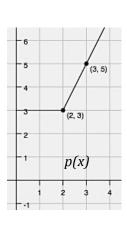
time in hours

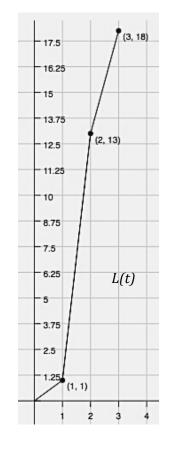
d.) Where was Isaac, 3 hours after school ended?

e.) Use function notation to write a mathematical sentence that says the same thing as question (d.)

f.) When was Isaac walking the fastest? How fast was he walking?




© 2013 mathematics vision project | Mf VP


### NAME

#### Set

Topic: Writing piece-wise defined functions

6. A parking garage charges \$3 for the first two hours that a car is parked in the garage. After that, the hourly fee is \$2 per hour. Write a piece-wise function p(x) for the cost of parking a car in the garage for x hours. (The graph of p(x) is shown.)





7. Lexie completed an 18 mile triathlon. She swam 1 mile in 1 hour, bicycled 12 miles in 1 hour, and then ran 5 miles in 1 hour. The graph of Lexie's distance versus time is shown. Write a piecewise function L(t) for the graph.

#### Go

Topic: Using the point-slope formula to write the equations of lines.

Write the equation of the line (in point-slope form) that contains the given slope and point.

8. *p*: (1, 2); m = 3 9. *p*: (1, -2); m = -1 10. p: (5, -1); m = 2

Write the equation of the line (in point-slope form) that contains the given points.

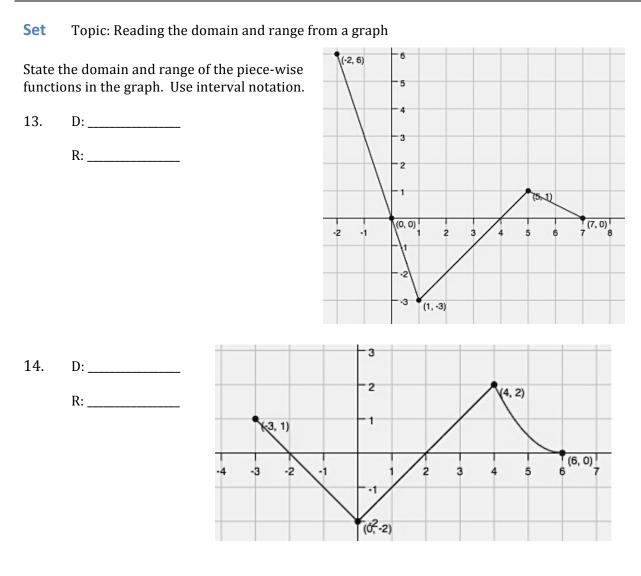
| 11. <i>K</i> (0,0); <i>L</i> (-4,5) | 12. <i>X</i> (-1, 7); <i>Y</i> (3, -1) | 13. <i>T</i> (-1, -9); <i>V</i> (5, 18) |
|-------------------------------------|----------------------------------------|-----------------------------------------|
|-------------------------------------|----------------------------------------|-----------------------------------------|



© 2013 MATHEMATICS VISION PROJECT | M ${f V}$ P

Ready, Set, Go!




#### Ready

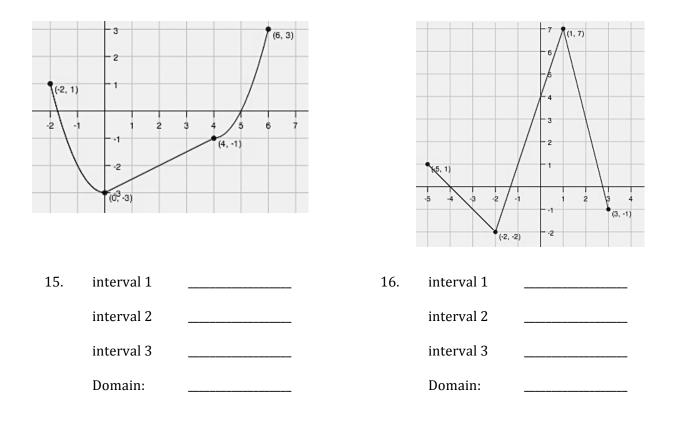
- Topic: Solving absolute value equations.
- Solve for x. (You will have two answers.)
- 1. |x| = 72. |x - 6| = 33. |w + 4| = 11
- 4. -9|m| = -63 5. |3d| = 15 6. |3x 5| = 11
- 7. -|m+3| = -13 8. |-4m| = 64 9. 2|x+1| 7 = -3
- 10. 5|c+3| 1 = 9 11. -2|2p-3| 1 = -11
- 12. Explain why the equation |m| = -3 has no solution.



© 2013 MATHEMATICS VISION PROJECT | Mf VP

## NAME




For each of the graphs below write the interval that defines each piece of the graph. Then write the domain of the entire piece-wise function.

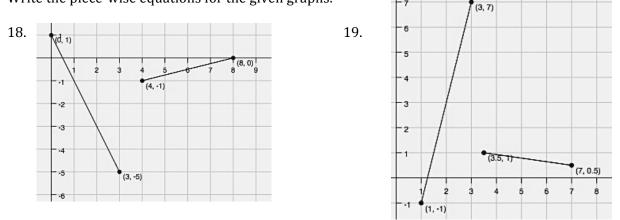
Example: (Look at the graph in #14. Moving left to right. Piece-wise functions use set notation.)


| interval 1 | $-3 \le x < 0$  |         |        |                                                                   |
|------------|-----------------|---------|--------|-------------------------------------------------------------------|
| interval 2 | $0 \le x < 4$   |         |        |                                                                   |
| interval 3 | $4 \le x \le 6$ | Domain: | [-3,6] | (We can use interval notation on the domain, if it's continuous.) |

Pay attention to your inequality symbols! You do not want the pieces of your graph to overlap. Do you know why?

© 2013 MATHEMATICS VISION PROJECT | Mf VP




17. So far you've only seen continuous piece-wise defined functions, but piece-wise functions can also be non-continuous. In fact, you've had some real life experience with one kind of noncontinuous piece-wise function. The graph below represents how some teachers calculate grades. Finish filling in the piece-wise equation. Then label the graph with the corresponding values.



# $\odot$ 2013 mathematics vision project | Mold V P



Write the piece-wise equations for the given graphs.

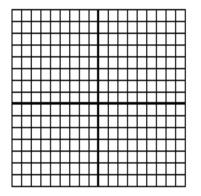


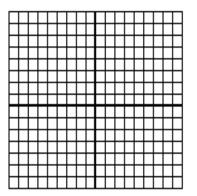
#### Go

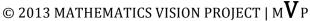
Topic: Transformations on quadratic equations

Beginning with the parent function  $f(x) = x^2$ , write the equation of the new function g(x) that is a transformation of f(x) as described. Then graph it.

20. Shift f(x) left 3 units, stretch vertically by 2, reflect f(x) vertically, and shift down 5 units.


21. Shift f(x) right 1, stretch vertically by 3, and shift up 4 units.


 $g(x) = \_$ 


22. Shift f(x) up 3 units, left 6, reflect vertically, and stretch by <sup>1</sup>/<sub>2</sub>

 $g(x) = \_$ 

$$g(x) = _{--}$$







