4.2 Bike Lovers

A Solidify Understanding Task

Michelle and Rashid love going on long bike rides. Every Saturday, they have a particular route they bike together that takes four hours. Below is a piecewise function that estimates the distance they travel for each hour of their bike ride.

$$f(x) = \begin{cases} 16x, & 0 < x \le 1\\ 10(x-1) + 16, & 1 < x \le 2\\ 14(x-2) + 26, & 2 < x \le 3\\ 12(x-3) + 40, & 3 < x \le 4 \end{cases}$$

- 1. What part of the bike ride do they go the fastest? Slowest?
- 2. What is the domain of this function?
- 3. Find f(2). Explain what this means in terms of the context.
- 4. How far have they traveled at 3 hours? Write the answer using function notation.
- 5. What is the total distance they travel on this bike ride?
- 6. Sketch a graph of the bike ride as a function of distance traveled over time.

Rashid also has a route he likes to do on his own and has the following continuous piecewise function to represent the average distance he travels in minutes:

$$f(x) = \begin{cases} \frac{1}{4}(x) & 0 < x \le 20\\ \frac{1}{5}(x - 20) + 5 & 20 < x \le 50\\ \frac{2}{7}(x - 50) + 11 & 50 < x \le 92\\ \frac{1}{8}(x - a) + b & 92 < x \le 100 \end{cases}$$

- 7. What is the domain for this function? What does the domain tell us?
- 8. What is the average rate of change during the interval [20, 50]?
- 9. Over which time interval is the greatest average rate of change?
- 10. Find the value of each, then complete each sentence frame:
 - a. $f(30) = ____.$ This means...
 - b. f(64) =_____. This means...
 - c. f(10) = _____. When finding output values for given input values in a piecewise function, you must ...
- 11. Find the value of *a*
- 12. Find the value of b
- 13. Sketch a graph of the bike ride as a function of distance traveled as a function of time.

Use the following continuous piecewise-defined function to answer the following questions.

$$f(x) = \begin{cases} \frac{1}{4}x^2 & 0 < x \le 10\\ \frac{1}{2}(x-10) + c & 10 < x \le 20\\ 2(x-20) + 30 & 20 < x \le 30 \end{cases}$$

- 14. Find the value of *c*.
- 15. Sketch the graph.
- 16. What is the domain of g(x)?
- 17. What is the range of g(x)?
- 18. Find f(8).
- 19. Find f(15).