Ready, Set, Go!

Ready

Topic: Reflecting Images

1. Reflect $\triangle ABC$ across the line y = x. Label the new image as $\Delta A'B'C'$. Label the coordinates of points A'B'C'. Connect segments AA', BB', and CC'. Describe how these segments are related to each other and to the line y = x.

- 2. On the graph provided to the right, draw a 5-sided figure in the 4th quadrant. Label the vertices of the pre-image. Include the coordinates of the vertices. Reflect the pre-image across the line y = x. Label the image, including the coordinates of the vertices.
- 3. A table of values for a four-sided figure is given in the first two columns. Reflect the image across the line y = x, and write the coordinates of the reflected image in the space provided.

A	(-6,2)	A'	
В	(-4,5)	B'	
С	(-2,3)	C'	
D	(-3,-1)	D'	

© 2013 MATHEMATICS VISION PROJECT | M $oldsymbol{V}$ P

Set

Topic: Absolute value of nonlinear functions

4. Figure 1 is the graph of a sound wave. The height (or depth) of the graph indicates the magnitude and direction f(x) reaches from the norm or the undisturbed value. In this case that would be the x-axis. When we are only concerned with the distance from the x-axis, we refer to this distance as the **amplitude**. Since distance alone is always positive, **amplitude** can be described as the absolute value of f(x). Use the graph of a sound wave to sketch a graph of the absolute value of the amplitude or y = |f(x)|.

- 5. *Figure 2* is a table of values for $g(x) = (x+3)^2 - 9.$ What values in the table would need to change if the function were redefined as h(x) = |g(x)|?
- 6. Graph h(x) = |g(x)|.

figure 2

x	g(x)	
-8	16	
-7	7	
-6	0	
-4	-5	
-3	-8	
-2	-9	
-1	-8	
0	0	
1	7	
2	16	

7. Write the piece-wise equation for h(x) = |g(x)|, as defined in problem6. Let the domain be all real numbers in the interval [-8, 2]

Go

Topic: Simplifying radical expressions.

Simplify. Write the answers in simplest radical form. Some answers may consist of numbers with no radical sign.

8.
$$(-7-2\sqrt{5})+(6+8\sqrt{5})$$

8.
$$\left(-7 - 2\sqrt{5}\right) + \left(6 + 8\sqrt{5}\right)$$
 9. $\left(-10 - \sqrt{13}\right) - \left(-11 + 5\sqrt{13}\right)$

10.
$$(4 - \sqrt{50}) + (7 + 3\sqrt{18}) - (12 - 2\sqrt{72})$$
 11. $\sqrt{98} + \sqrt{8}$

11.
$$\sqrt{98} + \sqrt{8}$$

12.
$$(-2-7\sqrt{5})+(2\sqrt{125})-3\sqrt{625}$$
 13. $(3r^2-8\sqrt{3}b^2)-(2r^2-3\sqrt{27}b^2)$

13.
$$(3r^2 - 8\sqrt{3b^2}) - (2r^2 - 3\sqrt{27b^2})$$

14. Assume that $x \ge 0$. Simplify $\sqrt{x} + \sqrt{x^3} + \sqrt{x^5} + \sqrt{x^7} + \sqrt{x^9} + \sqrt{x^{11}} + \sqrt{x^{13}} + \sqrt{x^{15}}$. (Hint: Use rational exponents.)