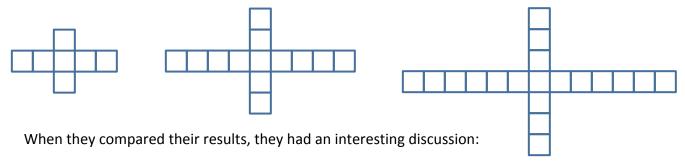

Making a Point 4.7

Zac and Sione went back to work on an extension of the quilt problem they were working on before. Now they have this pattern:

Zac: This one works a lot like the last quilt pattern to me. The only difference is that the pattern is doubling, so I knew it was exponential. I thought that it starts with 7 blocks and doubles, so the equation must be $f(x) = 3.5(2)^x$.

Sione: I don't know about that. I agree that it is an exponential function—just look at that growth pattern. But, I made this table:


Х	1	2	3	4
<i>f</i> (<i>x</i>)	7	14	28	56

I used the numbers in the table and got this equation: $f(x) = 7(2)^{x-1}$.

Mark: Very good work. I think those are both great and I think we can create a bunch more equations that will also work. See, $f(x)=14(2)^{x-2}$, $f(x)=28(2)^{x-3}$ all create that same thing on my calculator.

- 1. How did Zac get 3.5 in the equation?
- 2. How did Sione get an x-1 in her equation?
- 3. Is Mark correct? Can you use any of the equations? Why?

The students started working on predicting the number of quilt blocks in this pattern:

Zac: I got y = 6n + 1 because I noticed that 6 blocks were added each time so the pattern must have started with 1 block at n = 0.

Sione: I got y = 6(n-1) + 7 because I noticed that at n = 1 there were 7 blocks and at n = 2 there were 13, so I used my table to see that I could get the number of blocks by taking one less than the n, multiplying by 6 (because there are 6 new blocks in each figure) and then adding 7 because that's how many blocks in the first figure. Here's my table:

1	2	3	4	n
7	6+7 = 13	6+6+7=19	6+6+6+7 = 25	6(n-1) +7

Mark: Again, I think we can make a lot of equations that will work. I have these on my calculator and they are all the same: y = 6(n-2) + 13, y = 6(n-3) + 19, y = 6(n-4) + 25

- 4. Can all of the equations the students suggest work? Why or Why not?
- 5. If all the equations can work then make another one that would work?
- 6. Make an equation for each table below. (Use the strategy the students used above.)

a.

Х	У
32	50
33	55
34	60

b.

Х	У
26	78
27	70
28	62

c.

Х	У
-15	32
-14	39
-13	46