Mod 6 Transformations Review

Matching I - Match each image with the transformation that has taken place. (G.CO.4)

1.

2.

3.

4.

- (A) Reflect across y = -2x + 1
- (B) $f(x,y) \rightarrow (x+5, y+6)$
- (C) Rotate 90° Clockwise around the point (0, 0)
- (D) $f(x,y)\rightarrow(x+1,y+2)$
- 5. What transformations preserve distance and angles between the image and pre-image?
- 6. What transformations DO NOT preserve distance and angles between the image and preimage?
- 7. Based off questions 4-5, which of the following transformations <u>will</u> preserve distances and angles between pre-image and image? (G.CO.2)
- (A) $f(x, y) \rightarrow (4x, y-4)$

(B) $f(x, y) \rightarrow (-3x, y)$

(C) $f(x, y) \rightarrow (2-x, 2y)$

(D) $f(x, y) \rightarrow (x + 2, y - 2)$

8. Which of the following transformations <u>will not</u> preserve distances and angles between pre-image and image? (G.CO.2)

(A) $f(x, y) \rightarrow (x+3, y-2)$

(B) $f(x, y) \rightarrow (-x, y)$

(C) $f(x,y) \rightarrow (3x,3y)$

(D) $f(x, y) \rightarrow (x, y+6)$

Perform the requested transformation. *If you transform point A, make sure you label the transformed point as A'.* (G.CO.5)

9.

10.

$$f(x,y) \rightarrow (x-4, y-3)$$

11.

12.

Rotate the line segment AB 90° counter-clockwise around the point (1, 1)

13.

Clearly draw the line of reflection on the graph above. Write the equation of the line. 14.

Graph a perpendicular line to the one shown above. Write the equation of both lines.

Ready, Set, Go!

©2012 www.flickr.com/photos/suendercafe

Ready

Topic: Defining geometric shapes and components

For each of the geometric words below write a definition of the object that addresses the essential elements. Also, list necessary attributes and characteristics.

- 1. Quadrilateral:
- 2. Parallelogram:
- 3. Rectangle:
- 4. Square:
- 5. Rhombus:
- 6. Trapezoid:

Set

Topic: Reflections and Rotations, composing reflections to create a rotation

Perform the indicated rotations.

7.

Use the center of rotation point *C* and rotate point *P* clockwise around it 90°. Label the image P'.

With point \boldsymbol{C} as a center of rotation also rotate point \boldsymbol{P} 180°. Label this image P".

© 2012 Mathematics Vision Project| Mold VP

8.

Use the center of rotation point *C* and rotate point *P* clockwise around it 90°. Label the image P'.

With point *C* as a center of rotation also rotate point *P* 180°. Label this image P".

9.

a. What is the equation for the line for reflection that reflects point **P** onto **P**'?

b. What is the equation for the line of reflections that reflects point **P'** onto **P"**?

c. Could **P**" also be considered a rotation of point **P**? If so what is the center of rotation and how many degrees was point **P** rotated?

10.

- a. What is the equation for the line for reflection that reflects point **P** onto **P**'?
- b. What is the equation for the line of reflections that reflects point **P'** onto **P"**?
- c. Could **P**" also be considered a rotation of point **P**? If so what is the center of rotation and how many degrees was point **P** rotated?

11.

- a. What is the equation for the line for reflection that reflects point **P** onto **P**'?
- b. What is the equation for the line of reflections that reflects point **P'** onto **P"**?
- c. Could **P**" also be considered a rotation of point **P**? If so what is the center of rotation and how many degrees was point **P** rotated?

© 2012 Mathematics Vision Project| Mold VP

In partnership with the Utah State Office of Education

 $Licensed\ under\ the\ Creative\ Commons\ Attribution-NonCommercial-Share Alike\ 3.0\ Unported\ license.$

Go

Topic: Rotations about the origin

Plot the given coordinate and then perform the indicated rotation in a clockwise direction around the origin, the point (0,0), and plot the image created. State the coordinates of the image.

- 12. Point *A* (4, 2) rotate 180^o Coordinates for Point A' (___,__)
- 13. Point **B** (-5, -3) rotate 90° clockwise Coordinates for Point **B**' (___ , ___)
- 14. Point *C* (-7, 3) rotate 180^o Coordinates for Point C' (___,__)
- 15. Point **D** (1, -6) rotate 900 clockwise Coordinates for Point **D**' (___,__)

© 2012 Mathematics Vision Project| Mold VP