Too Big or Not Too Big, That is the Question, part 1 A Solidify Understanding Task

As Carlos is considering the amount of money available for purchasing cat pens and dog runs (see below) he realizes that his father's suggestion of boarding "the same number of each, perhaps 12 cats and 12 dogs" is too big. Why?

- *Start-up Costs*: Carlos and Clarita plan to invest much of the \$1280 they earned from their last business venture to purchase cat pens and dog runs. It will cost \$32 for each cat pen and \$80 for each dog run.
- Find at least 5 more combinations of cats and dogs that would be "too big" based on this *Start-up Cost* constraint. Plot each of these combinations as points on a coordinate grid using the same color for each point.
- 2. Find at least 5 combinations of cats and dogs that would not be "too big" based on this *Start-up Cost* constraint. Plot each of these combinations as points on a coordinate grid using a different color for the points than you used in #1.
- 3. Find at least 5 combinations of cats and dogs that would be "just right" based on this *Start-up Cost* constraint. That is, find combinations of cat pens and dog runs that would cost exactly \$1280. Plot each of these combinations as points on a coordinate grid using a third color.
- 4. What do you notice about these three different collections of points?
- 5. Write an equation for the line that passes through the points representing combinations of cat pens and dog runs that cost exactly \$1280. What does the slope of this line represent?

In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.

© 2012 Mathematics Vision Project | M**V**P

Too Big or Not Too Big, That is the Question, part 2 A Solidify Understanding Task

Carlos and Clarita don't have to spend all of their money on cat pens and dog runs, unless it will help them maximize their profit.

- 1. Shade all of the points on your coordinate grid that **satisfy** the *Start-up Costs* constraint.
- 2. Write a mathematical rule to represent the points shaded in #1. That is, write an inequality whose **solution set** is the collection of points that satisfy the *Start-up Costs* constraint.

In addition to *start-up costs*, Carlos needs to consider how much space he has available, base on the following:

- Space: Cat pens will require 6 ft² of space, while dog runs require 24 ft². Carlos and Clarita have up to 360 ft² available in the storage shed for pens and runs, while still leaving enough room to move around the cages.
- 3. Write an inequality to represent the solution set for the *space* constraint. Shade the solution set for this inequality on a different coordinate grid.

In partnership with the Utah State Office of Education Licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license.

© 2012 Mathematics Vision Project | M \mathbf{V} P