Ready, Set, Go!

© 2012 www.flickr.com/photos/the-g-uk

Ready

Topic: Comparing linear equations and arithmetic sequences

1. Describe similarities and differences between linear equations and arithmetic sequences.

Similarities	Differences

Set

Topic: representations of arithmetic sequences

Use the given information to complete the other representations for each arithmetic sequence.

2. Recursive Equation:

Explicit Equation:

Table	
Days	Cost
1	8
2	16
3	24
4	32

Create a context

Graph

© 2012 Mathematics Vision Project | Mold VP

Recursive Equation: f(1) = 4, f(n) = f(n-1) + 33.

Graph

Explicit Equation:

Create a context

Recursive Equation:

Explicit Equation: f(n) = 4 + 5(n - 1)

Create a context

Graph

5. **Recursive Equation:**

Explicit Equation:

Create a context

Janet wants to know how many seats are in each row of the theater. Jamal lets her know that each row has 2 seats more than the row in front of it. The first row has 14 seats.

Graph

Go

Topic: Writing explicit equations

Given the recursive equation for each arithmetic sequence, write the explicit equation.

6.
$$f(n) = f(n-1) - 2$$
; $f(1) = 8$

7.
$$f(n) = 5 + f(n-1)$$
; $f(1) = 0$

8.
$$f(n) = f(n-1) + 1$$
; $f(1) = \frac{5}{3}$